803 research outputs found

    Analytical calculation of pressure for confined atomic and molecular systems using the eXtreme-Pressure Polarizable Continuum Model

    Full text link
    We show that the pressure acting on atoms and molecular systems within the compression cavity of the eXtreme-Pressure Polarizable Continuum method can be expressed in terms of the electron density of the systems and of the Pauli-repulsion confining potential. The analytical expression holds for spherical cavities as well as for cavities constructed from van der Waals spheres of the constituting atoms of the molecular systems

    Electronegativity at the Shock Front

    Get PDF
    In this work, a scale for pressure-adapted atomic electronegativity is used to make general predictions of bond polarity in H-, C-, N- and O-based compounds experiencing shock conditions. The qualitative picture that emerges is one of increasing polarity of several bonds common in energetic materials. The general predictions made are compared to, and found to support, claims of ionic decomposition routes in compressed nitromethane and nitrate esters at high pressure. Changing electronegativity is also suggested as a factor driving the ionic disproportionation of various molecular phases with compression. Calculations using the eXtreme-Polarizable Continuum Model (XP-PCM) predict increasing energy differences between ground and excited states in non-bonded H, C, N, and O atoms as a function of pressure. This data enables for a discussion on the reliability of electronegativity-based rationales at more extreme thermodynamic conditions

    Latent Heat Fluxes over Complex Terrain from Airborne Water Vapour and Wind Lidars

    Get PDF
    Tropospheric profiles of water vapour and wind were measured with a differential absorption lidar (DIAL) and a heterodyne detection Doppler wind lidar collo-cated onboard the DLR Falcon research aircraft in the past two years. The DIAL is a newly developed four-wavelength system operating on three water vapour absorption lines of different strengths, one offline wavelength at 935 nm (each 50 Hz, 40 mJ), and 532 and 1064 nm for aerosol profiling. It is designed as an airborne demonstrator for a possible future space-borne water vapour lidar mission. It operated success-fully during the Convective and Orographically-induced Precipitation Study (COPS) in July 2007 over the Black Forest Mountains in southern Germany, and during the Norwegian THORPEX-IPY field experiment in March 2008 over the European North Sea. For the study of summertime convection initiation over complex terrain and the development of Polar Lows in the North Sea both campaigns included latent heat flux missions where both airborne lidars were pointed nadir-viewing. Using eddy-correlation of the remotely-sensed wind and water vapour fluctuations, a repre-sentative flux profile can be obtained from a single over-flight of the area under investigation. The lidars’ spatial resolution is ~200 m which resolves the domi-nant circulation and flux patterns in a convective boundary layer. This novel instrumentation allows ob-taining profiles of the latent heat flux beneath the air-craft from one single over-flight of any area of interest

    Electronegativity Equilibration

    Get PDF
    Controlling the distribution of electrons in materials is the holy grail of chemistry and material science. Practical attempts at this feat are common but are often reliant on simplistic arguments based on electronegativity. One challenge is knowing when such arguments work, and which other factors may play a role. Ultimately, electrons move to equalize chemical potentials. In this work, we outline a theory in which chemical potentials of atoms and molecules are expressed in terms of reinterpretations of common chemical concepts and some physical quantities: electronegativity, chemical hardness, and the sensitivity of electronic repulsion and core levels with respect to changes in the electron density. At the zero-temperature limit, an expression of the Fermi level emerges that helps to connect several of these quantities to a plethora of material properties, theories and phenomena predominantly explored in condensed matter physics. Our theory runs counter to Sanderson\u27s postulate of electronegativity equalization and allows a perspective in which electronegativities of bonded atoms need not be equal. As chemical potentials equalize in this framework, electronegativities equilibrate

    In-Situ Electronegativity and the Bridging of Chemical Bonding Concepts

    Get PDF
    One challenge in chemistry is the plethora of often disparate models for rationalizing the electronic structure of molecules. Chemical concepts abound, but their connections are often frail. This work describes a quantum-mechanical framework that enables a combination of ideas from three approaches common for the analysis of chemical bonds: energy decomposition analysis (EDA), quantum chemical topology, and molecular orbital (MO) theory. The glue to our theory is the electron energy density, interpretable as one part electrons and one part electronegativity. We present a three-dimensional analysis of the electron energy density and use it to redefine what constitutes an atom in a molecule. Definitions of atomic partial charge and electronegativity follow in a way that connects these concepts to the total energy of a molecule. The formation of polar bonds is predicted to cause inversion of electronegativity, and a new perspective of bonding in diborane and guanine−cytosine base-pairing is presented. The electronegativity of atoms inside molecules is shown to be predictive of pKa

    In-Plane Focusing of Terahertz Surface Waves on a Gradient Index Metamaterial Film

    Full text link
    We designed and implemented a gradient index metasurface for the in-plane focusing of confined terahertz surface waves. We measured the spatial propagation of the surface waves by two-dimensional mapping of the complex electric field using a terahertz near-field spectroscope. The surface waves were focused to a diameter of 500 \micro m after a focal length of approx. 2 mm. In the focus, we measured a field amplitude enhancement of a factor of 3.Comment: 6 pages, 4 figure

    Can polarity-inverted membranes self-assemble on Titan?

    Get PDF
    The environmental and chemical limits of life are two of the most central questions in astrobiology. Our understanding of life’s boundaries has implications on the efficacy of biosignature identification in exoplanet atmospheres and in the solar system. The lipid bilayer membrane is one of the central prerequisites for life as we know it. Previous studies based on molecular dynamics simulations have suggested that polarity-inverted membranes, azotosomes, made up of small nitrogen-containing molecules, are kinetically persistent and may function on cryogenic liquid hydrocarbon worlds, such as Saturn’s moon Titan. We here take the next step and evaluate the thermodynamic viability of azotosome formation. Quantum mechanical calculations predict that azotosomes are not viable candidates for self-assembly akin to lipid bilayers in liquid water. We argue that cell membranes may be unnecessary for hypothetical astrobiology under stringent anhydrous and low-temperature conditions akin to those of Titan
    • …
    corecore